639 research outputs found

    Unsteady similarity solutions and oscillating ocean gyres

    Get PDF
    The effect of time-dependent forcing on steady solutions representing basin-scale flows is investigated. Analytical and numerical solutions are considered separately and compared. We first use symmetry methods to show how any steady solution of the ideal thermocline equations can be used to generate a family of unsteady solutions, via an arbitrary function of time α(t). The resulting time-dependent solutions correspond to distortion of the isopycnal surfaces by a velocity field which varies linearly in the three coordinate directions. Although the displacements are linear, the fluctuations can lead to a form of nonlinear streaming wherever the function α appears nonlinearly in expressions for mass and heat fluxes. For an example steady solution, changes in internal energy caused by the time-dependence are associated with changes in thermocline depth and fluxes of energy from the western boundary, although it is unclear to what extent this behavior is specific to the example chosen. We also describe another symmetry of the time-dependent thermocline equations which generates wave-like solutions from arbitrary steady solutions. All the time-dependent solutions are special cases of a symmetry which applies to a general advection equation. Potential vorticity advection provides another special case. With the inclusion of convective and dissipative processes, a more realistic steady solution is found numerically in a flat-bottomed sector. If the surface forcing functions oscillate annually, the resulting flow resembles the analytical predictions. As the oscillation period increases, spatial variations in phase disrupt the agreement as first boundary and then diffusive effects become important. For decadal period oscillations, nonlinear streaming is found to significantly increase the meridional overturning

    Sensitivity of the Eocene climate to CO<sub>2</sub> and orbital variability

    Get PDF
    The early Eocene, from about 56 Ma, with high atmospheric CO2 levels, offers an analogue for the response of the Earth’s climate system to anthropogenic fossil fuel burning. In this study, we present an ensemble of 50 Earth system model runs with an early Eocene palaeogeography and variation in the forcing values of atmospheric CO2 and the Earth’s orbital parameters. Relationships between simple summary metrics of model outputs and the forcing parameters are identified by linear modelling, providing estimates of the relative magnitudes of the effects of atmospheric CO2 and each of the orbital parameters on important climatic features, including tropical–polar temperature difference, ocean–land temperature contrast, Asian, African and South (S.) American monsoon rains, and climate sensitivity. Our results indicate that although CO2 exerts a dominant control on most of the climatic features examined in this study, the orbital parameters also strongly influence important components of the ocean–atmosphere system in a greenhouse Earth. In our ensemble, atmospheric CO2 spans the range 280–3000 ppm, and this variation accounts for over 90 % of the effects on mean air temperature, southern winter high-latitude ocean– land temperature contrast and northern winter tropical–polar temperature difference. However, the variation of precession accounts for over 80 % of the influence of the forcing parameters on the Asian and African monsoon rainfall, and obliquity variation accounts for over 65 % of the effects on winter ocean–land temperature contrast in high northern latitudes and northern summer tropical–polar temperature difference. Our results indicate a bimodal climate sensitivity, with values of 4.36 and 2.54 ◦C, dependent on low or high states of atmospheric CO2 concentration, respectively, with a threshold at approximately 1000 ppm in this model, and due to a saturated vegetation–albedo feedback. Our method gives a quantitative ranking of the influence of each of the forcing parameters on key climatic model outputs, with additional spatial information from singular value decomposition providing insights into likely physical mechanisms. The results demonstrate the importance of orbital variation as an agent of change in climates of the past, and we demonstrate that emulators derived from our modelling output can be used as rapid and efficient surrogates of the full complexity model to provide estimates of climate conditions from any set of forcing parameters

    "You are just left to get on with it": qualitative study of patient and carer experiences of the transition to secondary progressive multiple sclerosis

    Get PDF
    Objectives Although the transition to secondary progressive multiple sclerosis (SPMS) is known to be a period of uncertainty for clinicians, who may find progressive disease challenging to objectively identify, little research has explored the experiences of patients and carers specifically during this transition period. Our objective was to explore what patients and their carers understand about their disease stage and describe their experiences and perspectives on the transition to SPMS. Design Semistructured qualitative interviews and subsequent validation focus groups were analysed using inductive thematic analysis. Setting South East Wales, UK. Participants 20 patients with MS and 13 carers were interviewed. Eight patients and two carers participated in focus groups. Results Four main themes around disease progression were identified. ‘Realisation’ describes how patients came to understand they had SPMS while ‘reaction’ describes their response to this realisation. The ‘realities’ of living with SPMS, including dealing with the healthcare system during this period, were described along with ‘future challenges’ envisaged by patients and carers. Conclusions Awareness that the transition to SPMS has occurred, and subsequent emotional reactions and coping strategies, varied widely between patients and their carers. The process of diagnosing the transition was often not transparent and some individuals wanted information to help them understand what the transition to SPMS meant for them

    PLASIM–GENIE v1.0: a new intermediate complexity AOGCM

    Get PDF
    We describe the development, tuning and climate of Planet Simulator (PLASIM)–Grid-ENabled Integrated Earth system model (GENIE), a new intermediate complexity Atmosphere–Ocean General Circulation Model (AOGCM), built by coupling the Planet Simulator to the ocean, sea-ice and land-surface components of the GENIE Earth system model. PLASIM–GENIE supersedes GENIE-2, a coupling of GENIE to the Reading Intermediate General Circulation Model (IGCM). The primitive-equation atmosphere includes chaotic, three-dimensional (3-D) motion and interactive radiation and clouds, and dominates the computational load compared to the relatively simpler frictional-geostrophic ocean, which neglects momentum advection. The model is most appropriate for long-timescale or large ensemble studies where numerical efficiency is prioritised, but lack of data necessitates an internally consistent, coupled calculation of both oceanic and atmospheric fields. A 1000-year simulation with PLASIM–GENIE requires approximately 2 weeks on a single node of a 2.1 GHz AMD 6172 CPU. We demonstrate the tractability of PLASIM–GENIE ensembles by deriving a subjective tuning of the model with a 50- member ensemble of 1000-year simulations. The simulated climate is presented considering (i) global fields of seasonal surface air temperature, precipitation, wind, solar and thermal radiation, with comparisons to reanalysis data; (ii) vegetation carbon, soil moisture and aridity index; and (iii) sea surface temperature, salinity and ocean circulation. Considering its resolution, PLASIM–GENIE reproduces the main features of the climate system well and demonstrates usefulness for a wide range of applications

    Tectonic and climatic drivers of Asian monsoon evolution.

    Get PDF
    Asian Monsoon rainfall supports the livelihood of billions of people, yet the relative importance of different drivers remains an issue of great debate. Here, we present 30 million-year model-based reconstructions of Indian summer monsoon and South East Asian monsoon rainfall at millennial resolution. We show that precession is the dominant direct driver of orbital variability, although variability on obliquity timescales is driven through the ice sheets. Orographic development dominated the evolution of the South East Asian monsoon, but Indian summer monsoon evolution involved a complex mix of contributions from orography (39%), precession (25%), atmospheric CO2 (21%), ice-sheet state (5%) and ocean gateways (5%). Prior to 15 Ma, the Indian summer monsoon was broadly stable, albeit with substantial orbital variability. From 15 Ma to 5 Ma, strengthening was driven by a combination of orography and glaciation, while closure of the Panama gateway provided the prerequisite for the modern Indian summer monsoon state through a strengthened Atlantic meridional overturning circulation

    Coupled climate–carbon cycle simulation of the Last Glacial Maximum atmospheric CO2 decrease using a large ensemble of modern plausible parameter sets

    Get PDF
    During the Last Glacial Maximum (LGM), atmospheric CO2 was around 90 ppmv lower than during the pre-industrial period. The reasons for this decrease are most often elucidated through factorial experiments testing the impact of individual mechanisms. Due to uncertainty in our understanding of the real system, however, the different models used to conduct the experiments inevitably take on different parameter values and different structures. In this paper, the objective is therefore to take an uncertainty-based approach to investigating the LGM CO2 drop by simulating it with a large ensemble of parameter sets, designed to allow for a wide range of large-scale feedback response strengths. Our aim is not to definitely explain the causes of the CO2 drop but rather explore the range of possible responses. We find that the LGM CO2 decrease tends to predominantly be associated with decreasing sea surface temperatures (SSTs), increasing sea ice area, a weakening of the Atlantic Meridional Overturning Circulation (AMOC), a strengthening of the Antarctic Bottom Water (AABW) cell in the Atlantic Ocean, a decreasing ocean biological productivity, an increasing CaCO3 weathering flux and an increasing deep-sea CaCO3 burial flux. The majority of our simulations also predict an increase in terrestrial carbon, coupled with a decrease in ocean and increase in lithospheric carbon. We attribute the increase in terrestrial carbon to a slower soil respiration rate, as well as the preservation rather than destruction of carbon by the LGM ice sheets. An initial comparison of these dominant changes with observations and paleoproxies other than carbon isotope and oxygen data (not evaluated directly in this study) suggests broad agreement. However, we advise more detailed comparisons in the future, and also note that, conceptually at least, our results can only be reconciled with carbon isotope and oxygen data if additional processes not included in our model are brought into play

    Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves

    Get PDF
    Individual processes shaping geographical patterns of biodiversity are increasingly understood, but their complex interactions on broad spatial and temporal scales remain beyond the reach of analytical models and traditional experiments. To meet this challenge, we built a spatially explicit, mechanistic simulation model implementing adaptation, range shifts, fragmentation, speciation, dispersal, competition, and extinction, driven by modeled climates of the past 800,000 years in South America. Experimental topographic smoothing confirmed the impact of climate heterogeneity on diversification. The simulations identified regions and episodes of speciation (cradles), persistence (museums), and extinction (graves). Although the simulations had no target pattern and were not parameterized with empirical data, emerging richness maps closely resembled contemporary maps for major taxa, confirming powerful roles for evolution and diversification driven by topography and climate

    Cut-lengths of perennial ryegrass leaf-blades influences in vitro fermentation by the anaerobic fungus neocallimastix frontalis

    Get PDF
    Anaerobic fungi in the gut of domesticated and wild mammalian herbivores play a key role in the host’s ability to utilize plant biomass. Due to their highly effective ability to enzymatically degrade lignocellulose, anaerobic fungi are biotechnologically interesting. Numerous factors have been shown to affect the ability of anaerobic fungi to break down plant biomass. However, methods to reduce the non-productive lag time in batch cultures and the effect of leaf-blade cut-length and condition on the fungal fermentation are not known. Therefore, experimentation using a novel gas production approach with pre-grown, axenic cultures of Neocallimastix frontalis was performed using both fresh and air-dried perennial ryegrass leaf-blades of different cut-lengths. The methodology adopted removed the lag-phase and demonstrated the digestion of un-autoclaved leaf-blades. Fermentation of leaf-blades of 4.0 cm cut-length produced 18.4% more gas yet retained 11.2% more apparent DM relative to 0.5 cm cut-length leaf-blades. Drying did not affect fermentation by N. frontalis, although an interaction between drying and leaf-blade cut-length was noted. Removal of the lag phase and the use of un-autoclaved substrates are important when considering the biotechnological potential of anaerobic fungi. A hypothesis based upon sporulation at cut surfaces is proposed to describe the experimental results
    • …
    corecore